Guest Articles

The future of AI-Powered coding: Why code generation is not enough

This article guides you on overcoming challenges and maximizing the potential of AI in software development.

The dawn of the digital age brought forth a range of technological advancements, reshaping industries and redefining norms. In the realm of software engineering, generative AI coding assistants, including tools like GitHub Copilot and Tabnine, epitomise this wave. Drawing from the impact of foundational models like OpenAI’s GPT and Anthopic’s Claude, these tools interpret natural language inputs to suggest and generate code snippets, amplifying developer productivity. Notably, GitHub Copilot now underpins a staggering 46% of coding tasks, enhancing coding speed by an impressive 55%.

A study from McKinsey emphasised that software development stands as one of the best ways to achieve organisational efficiency with generative AI. Yet, the overarching question remains: How can generative AI go beyond mere code generation to elevate the software development life cycle?

Code better, not just faster

According to a recent survey from Stack Overflow, 70% of developers are either harnessing AI tools or gearing up to integrate them in the imminent future. Yet, while tools like GitHub Copilot and Replit’s Ghostwriter are predominantly centred on development and testing, there are several ways that generative AI could be used to enhance developer’s workflows. 

Among the various stages of the Software Development Life Cycle, code optimisation is one that is often overlooked. Yet, when embedded within the Continuous Integration and Continuous Deployment processes, it becomes the point wherein code is developed to peak performance. It’s the point at which code isn’t just moulded to function but to excel, to minimise latency and to amplify user experiences.

However, the benchmarks for code performance are continuously being changed, particularly in a landscape dominated by AI. But what exactly is driving this? 

Cost of compute and profitability: Software is eating the world. Even the allure of modern vehicles often lies in digital features like parking assistance and IoT connectivity. Yet, the attraction of generative AI coding assistants comes at a price. A16Z’s report underscores this, with cloud spending often taking 75-80% of revenue for software firms. Clearly, efficient code is not merely a technical goal but a financial necessity, as it can significantly cut cloud costs and boost profit margins for organisations.

Speed, Scale and Customer Experience: In the business world where milliseconds matter, code optimisation is the linchpin. From high-frequency trading to autonomous vehicle decision-making, performance is king. However, the advent of Generative AI and LLMs brings a new dimension to the speed challenge. Despite their benefits, the extensive processing times associated with LLMs can pose a significant hurdle for real-time and edge applications, particularly as the number of users and applications continues to grow.

Energy efficiency and ESG: Amidst the rapid expansion of generative AI, the emphasis on Environmental, Social, and Governance factors is intensifying, making energy-efficient code an urgent priority. To put this into perspective, the training of GPT-3 is estimated to have consumed 1,287 MWh of energy, resulting in emissions of over 550 tons of carbon dioxide equivalent. This is comparable to one person making 550 round trips between New York and San Francisco – and that’s before the model is even launched to consumers.

The environmental impact doesn’t stop at the training phase. For instance, integrating LLMs into search engines could potentially lead to a fivefold increase in computing power, resulting in substantial carbon emissions. Efficient code is important in curbing emissions while still enabling businesses to get the most out of AI. 

The challenges of code optimisation

Navigating the complexities of code optimisation is far from straightforward, and it is often littered with challenges. One of the major challenges among these is the scarcity of accomplished performance engineers, a niche segment of professionals that require salaries upwards of £500k in London, which may be a significant hurdle for many organisations. 

Compounding this is the time-intensive and iterative nature of optimisation, necessitating a cyclical process of code refinement, testing, and analysis that even the best of engineers find daunting – especially within expansive codebases that make a comprehensive view difficult to attain. 

Further to this, there are resource limitations that exist in the process. Large codebases require significant human resources for improvement; a codebase with a million lines of code could require up to 70 top developers, across several stages from testing to backend orchestration, further extending the optimisation timeline. 

These challenges also come with a cost. In 2020, the Cost of Poor Software Quality in the US alone exceeded the $2.08 trillion mark. This underscores the urgent need for innovative strategies in code optimisation. 

This staggering figure includes expenditures on rework, lost productivity, and customer dissatisfaction resulting from subpar code. Addressing this trillion-dollar problem demands a new approach to code optimisation.

Already we are seeing instances of AI being used to supercharge code optimisation to overcome these challenges. AI can automatically identify inefficiencies, generate enhanced code versions, recommend optimal code changes and more. This could be one way that businesses can turn this potential performance headache into a genuine competitive advantage. 

The bottom line

As we continue through this new phase of digital transformation, it’s clear that just creating code faster, even though it’s a breakthrough, doesn’t solve all the complex issues in software development. Generative AI has certainly changed how we code, making things faster and more efficient. But if businesses want to make the most of what AI offers, they need to use more than just code generation tools.

One area often ignored is performance optimisation. This important step is about making code work better, not just getting it done. It’s about saving money and protecting the environment, and that takes more than just an AI that suggests code. Companies need advanced tools and plans that are designed for today’s tech needs.

The cost of not doing this is huge. Poor software quality can lead to spending billions of dollars. This fact alone shows why we need better solutions right now. The way forward for companies is to combine code generation tools with other AI developer tools that accelerate coding while enhancing both performance and efficiency. By adopting this strategy, companies can really benefit from their AI technology, keeping them competitive and responsible as they navigate through the digital world.

Explore AITechPark for top AI, IoT, Cybersecurity advancements, And amplify your reach through guest posts and link collaboration.

Related posts

Remote security best practices and 2021 predictions

Robert Capps

6 Benefits of Hardware-Based Microsegmentation In Cybersecurity

Matias Katz

Why Data is the Foundation of Artificial Intelligence

Wilson Pang